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Quick installation 

 Download site  http://crd.lbl.gov/~xiaoye/SuperLU	

  Users’ Guide,  HTML code documentation	


 Gunzip, untar	

 Follow README at top level directory	


  Edit make.inc for your platform (compilers, optimizations, libraries, ...)	

   (may move to autoconf  in the future)	

  Link with a fast BLAS library	


•  The one under CBLAS/ is functional, but not optimized	

•  Vendor, GotoBLAS, ATLAS, … 	
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Outline of Tutorial 

 Functionality	

 Sparse matrix data structure, distribution, and user interface	

 Background of the algorithms	


  Differences between sequential and parallel solvers	

 Examples, Fortran 90 interface	


 Hands on exercises	




Solve sparse Ax=b : lots of zeros in matrix 

"   fluid dynamics, structural mechanics, chemical process simulation, 
circuit simulation, electromagnetic fields, magneto-hydrodynamics, 
seismic-imaging, economic modeling,  optimization, data analysis, 
statistics, . . . 

"   Example: A of dimension 106,   10~100 nonzeros per row 
"   Matlab:  > spy(A) 
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Strategies of sparse linear solvers 
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 Solving a system of linear equations Ax = b	

•  Sparse:  many zeros in A;  worth special treatment	


 Iterative methods: (e.g., Krylov, multigrid, …)	

  A is not changed (read-only)	

  Key kernel: sparse matrix-vector multiply	

•  Easier to optimize and parallelize	

  Low algorithmic complexity, but may not converge	


 Direct methods	

  A is modified (factorized)	

•  Harder to optimize and parallelize	

  Numerically robust, but higher algorithmic complexity	


 Often use direct method to precondition iterative method	

  Solve an easy system: M-1Ax = M-1b	
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Available direct solvers 

 Survey of different types of factorization codes	

	
http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf	

  LLT (s.p.d.) 	

  LDLT (symmetric indefinite) 	

  LU (nonsymmetric)	

  QR (least squares)	

  Sequential, shared-memory (multicore), distributed-memory, out-of-

core	

  GPU, FPGA become active.	


 Distributed-memory codes: usually MPI-based	

  SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]	


•  accessible from PETSc, Trilinos, . . .	

  MUMPS, PasTiX, WSMP, . . .	
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SuperLU Functionality 

 LU decomposition, triangular solution	

 Incomplete LU (ILU) preconditioner (serial SuperLU 4.0 up)	

 Transposed system, multiple RHS	

 Sparsity-preserving  ordering	


  Minimum degree ordering applied to ATA or AT+A [MMD, Liu `85] 	

  ‘Nested-dissection’ applied to ATA or AT+A [(Par)Metis, (PT)-Scotch]	


 User-controllable pivoting	

  Pre-assigned row and/or column permutations	

  Partial pivoting with threshold	


 Equilibration: 	

 Condition number estimation	

 Iterative refinement	

 Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]	


cr ADD
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Software Status 

  Fortran interfaces	

  SuperLU_MT similar to SuperLU both numerically and in usage	


SuperLU	
 SuperLU_MT	
 SuperLU_DIST	


Platform	
 Serial	
 SMP,  multicore	
 Distributed	

memory	


Language	
 C	
 C + Pthreads	

or OpenMP	


C + MPI + 
OpenMP + 
CUDA	


Data type	
 Real/complex,	

Single/double	


Real/complex,	

Single/double	


Real/complex,	

Double	


Data structure	
 CCS / CRS	
 CCS / CRS	
 Distributed CRS	
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Usage of SuperLU 

 Industry	

  Cray Scientific Libraries	

  FEMLAB	

  HP Mathematical Library	

  IMSL Numerical Library	

  NAG	

  Sun Performance Library	

  Python (NumPy, SciPy)	


 Research	

  In FASTMath Tools: Hypre, PETSc, Trilinos, …	

  M3D-C1, NIMROD (burning plasmas for fusion energys)	

  Omega3P (accelerator design)	

  . . .	
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Data structure: Compressed Row Storage (CRS) 

 Store nonzeros row by row contiguously	

 Example: N = 7,  NNZ = 19	

 3 arrays:	


  Storage: NNZ reals,  NNZ+N+1 integers	
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Many other data structures:  “Templates for the Solution of Linear Systems: 
Building Blocks for Iterative  Methods”,  R. Barrett et al.	
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User interface – distribute input matrices 

  Matrices involved:	

  A, B (turned into X) – input, users manipulate them	

  L, U – output, users do not need to see them	


  A (sparse) and B (dense) are distributed by block rows	


	
 	
 	
 	
 	
 	
	

	
 	
 	
 	
 	
 	
Local A stored in	

	
 	
 	
 	
 	
 	
Compressed Row Format	


	


  Natural for users, and consistent with other popular packages: e.g. 
PETSc	


A	
 B	

x     x      x     x 

x     x      x 

x      x           x 

x      x           x 
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Distributed input interface 

 Each process has a structure to store local part of A 	

	
Distributed Compressed Row Storage	

	
	

	
	


    typedef struct {	

	
    int_t   nnz_loc;  // number of nonzeros in the local submatrix	

	
    int_t   m_loc;     // number of rows local to this processor	

	
    int_t   fst_row;   // global index of the first row	


        void   *nzval;     // pointer to array of nonzero values, packed by row	

	
    int_t   *colind;    // pointer to array of column indices of the nonzeros	

	
    int_t   *rowptr;   // pointer to array of beginning of rows in nzval[]and colind[]	

	
}  NRformat_loc;	

	




SuperLU tutorial 14 

Distributed Compressed Row Storage 

  Processor P0 data structure:	

  nnz_loc = 5	

  m_loc = 2	

  fst_row = 0  // 0-based indexing 	

  nzval  = { s,  u,  u,  l,  u }	

  colind = { 0,  2,  4,  0,  1 }	

  rowptr = { 0, 3, 5 }	


  Processor P1 data structure:	

  nnz_loc = 7	

  m_loc    = 3	

  fst_row  = 2   // 0-based indexing	

  nzval   = { l,  p,  e,  u,  l,  l,  r }	

  colind  = { 1, 2,  3,  4,  0, 1, 4 }	

  rowptr = { 0, 2, 4, 7 }	
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 2D block cyclic layout	
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Internal : distributed L & U factored matrices 
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Process grid and MPI communicator 

 Example:  Solving a preconditioned linear system 	
	

	
    M-1A x = M-1 b	


 	
    M = diag(A11, A22, A33)	

	

	
à use SuperLU_DIST for	

	
     each diagonal block	

	

	

 Create 3 process grids, same logical ranks (0:3),	

	
but different physical ranks	

 Each grid has its own MPI communicator	


A22 

A33 

A11 0 1 
2 3 

4 5 
6 7 

8 9 
10 11 
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Two ways to create a process grid 

 superlu_gridinit( MPI_Comm Bcomm, int nprow, 	

	
 	
 	
 	
int npcol, gridinfo_t *grid );	

  Maps the first {nprow, npcol} processes in the MPI communicator 

Bcomm to SuperLU 2D grid	


 superlu_gridmap( MPI_Comm Bcomm, int nprow, 	

	
    int npcol, int usermap[], int ldumap, gridinfo_t *grid );	

  Maps an arbitrary set of  {nprow, npcol } processes in the MPI 

communicator Bcomm to SuperLU 2D grid.  The ranks of the selected 
MPI processes are given in usermap[] array. 	

	
For example:	


11	
 12	
 13	

14	
 15	
 16	


0       1      2 
0 

1 
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Review of Gaussian Elimination (GE) 

  Solving a system of linear equations Ax = b	


  First step of GE:  (make sure      not too small . . . Otherwise do pivoting)	


  Repeats GE on C	

  Results in {L\U} decomposition (A = LU)	


  L lower triangular with unit diagonal, U upper triangular	


  Then, x is obtained by solving two triangular systems with L and U	
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Sparse factorization 
"   Store A explicitly …  many sparse compressed formats 
"   “Fill-in” . . . new nonzeros in L & U 

"   Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems 
"   Graph algorithms: directed/undirected graphs, bipartite graphs, 

paths, elimination trees, depth-first search, heuristics for NP-hard 
problems, cliques, graph partitioning, . . . 

"   Unfriendly to high performance, parallel computing 
"   Irregular memory access, indirect addressing, strong task/data 

dependency 
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Graph tool: reachable set, fill-path 

Edge (x,y) exists in filled graph G+ due to the path: x  7  3  9  y 
 
"   Finding fill-ins   finding transitive closure of G(A) 
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Algorithmic phases in sparse GE 

1.  Minimize number of fill-ins, maximize parallelism  (~10% time) 
"   Sparsity structure of L & U depends on that of A, which can be changed by 

row/column permutations (vertex re-labeling of the underlying graph) 
"   Ordering (combinatorial algorithms; “NP-complete” to find optimum 

[Yannakis ’83]; use heuristics) 

2.  Predict the fill-in positions in L & U (~10% time) 
"   Symbolic factorization (combinatorial algorithms) 

3.  Design efficient data structure for storage and quick retrieval of the 
nonzeros 
"   Compressed storage schemes 

4.  Perform factorization and triangular solutions (~80% time) 
"   Numerical algorithms (F.P. operations only on nonzeros) 
"   Usually dominate the total runtime 

"   For sparse Cholesky and QR, the steps can be separate; 
     for sparse LU with pivoting, steps 2 and 4 my be interleaved. 

21 



SuperLU tutorial 

General Sparse Solver 

 Use (blocked) CRS or CCS, and any ordering method	

  Leave room for fill-ins !  (symbolic factorization)	


 Exploit “supernode” (dense) structures in the factors	

  Can use Level 3 BLAS	

  Reduce inefficient indirect addressing (scatter/gather)	

  Reduce graph traversal time using a coarser graph	


22	
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Numerical Pivoting 

  Goal of pivoting is to control element growth in L & U for stability	

  For sparse factorizations, often relax the pivoting rule to trade with better 

sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)	


  Partial pivoting used in sequential SuperLU  and SuperLU_MT (GEPP) 	

  Can force diagonal pivoting (controlled by diagonal	

	
threshold)	


  Hard to implement scalably for sparse factorization	


  Static pivoting used in SuperLU_DIST (GESP)	

  Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’	

  During factor A’ = LU, replace tiny pivots by           , without changing data 

structures for L & U	

  If needed, use a few steps of iterative refinement after the first solution	

  quite stable in practice	


Aε

b 

s x x 

x   x    x 
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Ordering : Minimum Degree 

Local greedy: minimize upper bound on fill-in	
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Ordering : Nested Dissection  

 Model problem: discretized system Ax = b from certain PDEs, 
e.g., 5-point stencil on  n x n  grid,  N = n2	

  Factorization flops: O( n3 ) = O( N3/2 )	


 Theorem: ND ordering gives optimal complexity in exact 
arithmetic [George ’73, Hoffman/Martin/Rose]	
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ND Ordering 

 Generalized nested dissection [Lipton/Rose/Tarjan ’79]	

  Global graph partitioning: top-down, divide-and-conqure 	
	

  Best for largest problems	

  Parallel codes available: ParMetis, PT-Scotch	

  First level	


  Recurse on A and B	

 Goal: find the smallest possible separator S at each level	


  Multilevel schemes: 	

•  Chaco [Hendrickson/Leland `94],  Metis [Karypis/Kumar `95]	


  Spectral bisection [Simon et al. `90-`95]	

  Geometric and spectral bisection [Chan/Gilbert/Teng `94]	
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ND Ordering 

2D mesh 	
 A,  with row-wise ordering	


A,  with ND ordering	
 L &U factors	
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Ordering for LU (unsymmetric) 

  Can use a symmetric ordering on a symmetrized matrix	

•  Case of partial pivoting (serial SuperLU, SuperLU_MT):	

	
 	
Use ordering based on AT*A	

•  Case of static pivoting (SuperLU_DIST): 	

	
 	
Use ordering based on AT+A	

	


  Can find better ordering based solely on A, without 
symmetrization 	


•  Diagonal Markowitz   [Amestoy/Li/Ng `06]	

•  Similar to minimum degree, but without symmetrization	


•  Hypergraph partition   [Boman, Grigori, et al. `08]	

•  Similar to ND on ATA, but no need to compute ATA	
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Ordering Interface in SuperLU 

 Library contains the following routines:	

  Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]	

  Utility routines: form AT+A , ATA 	


 Users may input any other permutation vector (e.g., using 
Metis, Chaco, etc. )	


       . . .	

      set_default_options_dist ( &options );	

      options.ColPerm = MY_PERMC;    // modify default option	

      ScalePermstructInit ( m, n, &ScalePermstruct );	

      METIS (  . . . , &ScalePermstruct.perm_c );	

      . . .	

      pdgssvx ( &options, . . . , &ScalePermstruct, . . . );	

       . . .	
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Symbolic Factorization 

 Cholesky [George/Liu `81 book]	

  Use elimination graph of L and its transitive reduction (elimination tree)	

  Complexity linear in output: O(nnz(L))	


 LU	

  Use elimination graphs of L & U and their transitive reductions 

(elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]	

  Improved by symmetric structure pruning [Eisenstat/Liu `92]	

  Improved by supernodes	

  Complexity greater than nnz(L+U), but much smaller than flops(LU)	
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Numerical Factorization 

 Sequential SuperLU	

  Enhance data reuse in memory hierarchy by calling Level 3 BLAS on 

the supernodes	

 SuperLU_MT	


  Exploit both coarse and fine grain parallelism	

  Employ dynamic scheduling to minimize parallel runtime	


 SuperLU_DIST	

  Enhance scalability by static pivoting and 2D matrix distribution	
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SuperLU_MT  [Li/Demmel/Gilbert] 

 Pthread or OpenMP	

 Left-looking – relatively more READs than WRITEs	

 Use shared task queue to schedule ready columns in the 

elimination tree (bottom up)	

 Over 12x speedup on conventional 16-CPU SMPs (1999)	
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 MPI	

 Right-looking – relatively more WRITEs than READs	

 2D block cyclic layout	

 Look-ahead to overlap comm. & comp.	

 Scales to 1000s processors	
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SuperLU_DIST  [Li/Demmel/Grigori/Yamazaki] 
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Multicore platforms 

 Intel Clovertown: 	

 2.33 GHz Xeon, 9.3 Gflops/core	

 2 sockets x 4 cores/socket	

 L2 cache: 4 MB/2 cores	


 Sun VictoriaFalls: 	

 1.4 GHz UltraSparc T2, 1.4 Gflops/core	

 2 sockets x 8 cores/socket x 8 hardware threads/core	

 L2 cache shared: 4 MB	
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Benchmark matrices 

apps dim nnz(A) SLU_MT 
Fill 

SLU_DIST 
Fill 

Avg.  
S-node 

g7jac200 Economic 
model 

59,310 0.7 M 33.7 M 33.7 M 1.9 

stomach 3D finite 
diff. 

213,360 3.0 M 136.8 M 137.4 M 4.0 

torso3 3D finite 
diff. 

259,156 4.4 M 784.7 M 785.0 M 3.1 

twotone Nonlinear 
analog 
circuit 
 

120,750 1.2 M 11.4 M 11.4 M 2.3 
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Intel Clovertown 

 Maximum speedup 4.3,  smaller than conventional SMP	

 Pthreads scale better	

 Question: tools to analyze resource contention?	
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SunVictoriaFalls – multicore + multithread 

  Maximum speedup 20 
   Pthreads more robust, scale better 
   MPICH crashes with large #tasks, 

mismatch between coarse and 
fine grain models 

SuperLU_MT	
 SuperLU_DIST	
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Performance of larger matrices 

  Sparsity ordering: MeTis applied to structure of A’+A	


Name Application Data 
type 

N |A| / N 
Sparsity 

|L\U| 
(10^6) 

Fill-ratio 

matrix211 Fusion, 
MHD eqns 
(M3D-C1) 

Real 801,378 161 1276.0 9.9 

cc_linear2 
 

Fusion, 
MHD eqns 
(NIMROD) 

Complex 259,203 109 199.7 7.1 

matick Circuit sim. 
MNA method 
(IBM) 

Complex 16,019 4005 64.3 1.0 

cage13 DNA 
electrophoresis 

Real 445,315 17 4550.9 608.5 
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Strong scaling (fixed size): Cray XE6 (hopper@nersc) 

  Up to 1.4 Tflops factorization rate	


  2 x 12-core AMD 'MagnyCours’ per node, 2.1 GHz processor	




SuperLU_DIST 3.0: better DAG scheduling 

"   Implemented new static scheduling and flexible look-ahead algorithms that 
shortened the length of the critical path.  

"   Idle time was significantly reduced (speedup up to 2.6x) 
"   To further improve performance: 

"   more sophisticated scheduling schemes 
"   hybrid programming paradigms 
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Accelerator, n=2.7M, fill-ratio=12 DNA, n = 445K, fill-ratio= 609 



Multicore / GPU-Aware 

"   New hybrid programming code: MPI+OpenMP+CUDA, able to use 
all the CPUs and GPUs on manycore computers. 

"   Algorithmic changes:   
"   Aggregate small BLAS operations into larger ones. 
"   CPU multithreading Scatter/Gather operations. 
"   Hide long-latency operations. 

"   Results: using 100 nodes GPU clusters, up to 2.7x faster,  2x-5x 
memory saving.  

"   New SuperLU_DIST 4.0 release, August 2014. 

41 



CPU + GPU algorithm 

42 






  

①  Aggregate small blocks 	

②  GEMM of large blocks	

③  Scatter 	


GPU acceleration: 	

Software pipelining to 
overlap GPU execution 
with CPU Scatter, data 
transfer.  	
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ILU Interface 

 Available in serial SuperLU 4.0, June 2009	

 Similar to ILUTP [Saad]: “T” = threshold, “P” = pivoting 

  among the most sophisticated, more robust than structure-
based dropping (e.g., level-of-fill)	


 ILU driver: SRC/dgsisx.c	

	
ILU factorization routine: SRC/dgsitrf.c	

	
GMRES driver: EXAMPLE/ditersol.c	

 Parameters:	


  ilu_set_default_options ( &options )	


•  options.ILU_DropTol – numerical threshold ( τ )	

•  options.ILU_FillFactor – bound on the fill-ratio ( γ  ) 
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Result of Supernodal ILU  (S-ILU) 

 New dropping rules S-ILU(τ, γ) 
  supernode-based thresholding (τ ) 
  adaptive strategy to meet user-desired 

 fill-ratio upper bound ( γ ) 
 

 Performance of S-ILU 
  For 232 test matrices, S-ILU + GMRES converges with 138  

cases (~60% success rate) 
  S-ILU + GMRES is 1.6x faster than scalar ILU + GMRES 

i	  
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S-ILU for extended MHD (fusion energy sim.) 

 AMD Opteron 2.4 GHz (Cray XT5) 
  ILU parameters: τ = 10-4, Υ = 10 
 Up to 9x smaller fill ratio, and 10x faster 

Problems order Nonzeros 
(millions) 

SuperLU 
Time     fill-ratio 

S-ILU 
time  fill-ratio 

GMRES 
Time     Iters 

matrix31 17,298 2.7 m 33.3 13.1 8.2 2.7 0.6 9 

matrix41 30,258 4.7 m 111.1 17.5 18.6 2.9 1.4 11 

matrix61 66,978 10.6 m 612.5 26.3 54.3 3.0 7.3 20 

matrix121 263,538 42.5 m x x 145.2 1.7 47.8 45 

matrix181 589,698 95.2 m x x 415.0 1.7 716.0 289 
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Tips for Debugging Performance 

 Check sparsity ordering	

 Diagonal pivoting is preferable	


  E.g., matrix is diagonally dominant, . . .	


 Need good BLAS library (vendor, ATLAS, GOTO, . . .)	

  May need adjust block size for each architecture	

	
( Parameters modifiable in routine sp_ienv() )	


•  Larger blocks better for uniprocessor	

•  Smaller blocks better for parallellism and load balance	


  Open problem: automatic tuning for block size?	
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Summary 

 Sparse LU, ILU are important kernels for science and engineering 
applications, used in practice on a regular basis	


 Performance more sensitive to latency than dense case	

  Continuing developments funded by DOE SciDAC projects	


  Integrate into more applications 	

  Hybrid model of parallelism for multicore/vector nodes, differentiate 

intra-node and inter-node parallelism	

  Hybrid programming models,  hybrid algorithms	


  Parallel HSS precondtioners	

  Parallel hybrid direct-iterative solver based on domain decomposition	
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 https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC_2014/Exercises/superlu/README.html	


 On vesta:	

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/examples/superlu	

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/install/superlu	

	

	

 http://crd.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html	
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Examples in EXAMPLE/ 

 pddrive.c: Solve one linear system	

 pddrive1.c: Solve the systems with same A but different right-

hand side at different times	

  Reuse the factored form of A	


 pddrive2.c: Solve the systems with the same pattern as A	

  Reuse the sparsity ordering	


 pddrive3.c: Solve the systems with the same sparsity pattern 
and similar values	

  Reuse the sparsity ordering and symbolic factorization	


 pddrive4.c: Divide the processes into two subgroups (two 
grids) such that each subgroup solves a linear system 
independently from the other.	
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SuperLU_DIST Example Program 

  EXAMPLE/pddrive.c	


  Five basic steps	

1.  Initialize the MPI environment and SuperLU process grid	

2.  Set up the input matrices A and B	

3.  Set the options argument (can modify the default)	

4.  Call SuperLU routine PDGSSVX	

5.  Release the process grid, deallocate memory,  and terminate the MPI 

environment	
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Fortran 90 Interface in FORTRAN/ 

 All SuperLU objects (e.g., LU structure) are opaque for F90	

  They are allocated, deallocated and operated in the C side and not 

directly accessible from Fortran side.	

 C objects are accessed via handles that exist in Fortran’s user 

space	

 In Fortran, all handles are of type INTEGER	

 Example:  FORTRAN/f_5x5.f90	


0.12,0.18,0.5,0.16,0.21,0.19  , ======

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= lrepus

rll
ue

pl
ul

uus

A
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 https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC_2014/Exercises/superlu/README.html	


 On vesta:	

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/examples/superlu	

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/install/superlu	

	

	

 http://crd.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html	
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Examples in EXAMPLE/ 

 pddrive.c: Solve one linear system	

 pddrive1.c: Solve the systems with same A but different right-

hand side at different times	

  Reuse the factored form of A	


 pddrive2.c: Solve the systems with the same pattern as A	

  Reuse the sparsity ordering	


 pddrive3.c: Solve the systems with the same sparsity pattern 
and similar values	

  Reuse the sparsity ordering and symbolic factorization	


 pddrive4.c: Divide the processes into two subgroups (two 
grids) such that each subgroup solves a linear system 
independently from the other.	
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SuperLU_DIST Example Program 

  EXAMPLE/pddrive.c	


  Five basic steps	

1.  Initialize the MPI environment and SuperLU process grid	

2.  Set up the input matrices A and B	

3.  Set the options argument (can modify the default)	

4.  Call SuperLU routine PDGSSVX	

5.  Release the process grid, deallocate memory,  and terminate the MPI 

environment	
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Fortran 90 Interface in FORTRAN/ 

 All SuperLU objects (e.g., LU structure) are opaque for F90	

  They are allocated, deallocated and operated in the C side and not 

directly accessible from Fortran side.	

 C objects are accessed via handles that exist in Fortran’s user 

space	

 In Fortran, all handles are of type INTEGER	

 Example:  FORTRAN/f_5x5.f90	


0.12,0.18,0.5,0.16,0.21,0.19  , ======

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= lrepus

rll
ue

pl
ul

uus

A


